Elipse dos Erros

Elipse dos Erros

A correspondente MVC pode ser obtida por propagação: Σ'_xy' = D Σ_xy D^T

Σ'_xy' =

[cos(t)sin(t)sin(t)cos(t)][σx2σxyσxyσy2][cos(t)sin(t)sin(t)cos(t)]\begin{bmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{bmatrix} \begin{bmatrix} \sigma^2_x & \sigma_{xy} \\ \sigma_{xy} & \sigma^2_y \end{bmatrix} \begin{bmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{bmatrix}

Segue-se que:

σx2=σx2cos2(t)+σy2sin2(t)+2σxysin(t)cos(t)\sigma_{x'}^2 = \sigma_x^2 \cos^2(t) + \sigma_y^2 \sin^2(t) + 2\sigma_{xy}\sin(t)\cos(t)
σy2=σx2sin2(t)+σy2cos2(t)2σxysin(t)cos(t)\sigma_{y'}^2 = \sigma_x^2 \sin^2(t) + \sigma_y^2 \cos^2(t) - 2\sigma_{xy}\sin(t)\cos(t)
σxy=(σx2σy2)sin(t)cos(t)+σxy(cos2(t)sin2(t))\sigma_{x'y'} = -(\sigma_x^2 - \sigma_y^2)\sin(t)\cos(t) + \sigma_{xy}(\cos^2(t) - \sin^2(t))

Last updated